
R60 Extended Data Sheet

- Patent US 9,291,657 No test cable needed
- Frequency range: 1 MHz 6 GHz
- Measurement time per point: 100 µs per point, min typ.
- Up to 100,001 measurement points
- Automation programming in LabVIEW, Python, MATLAB, .NET, etc.
- Time domain and gating conversion included

R60 Specifications¹

Primary Specifications

* *	
Impedance	50 Ohm
Test port connector	type N, male
Number of test ports	1
Frequency range	1 MHz to 6 GHz
Full frequency accuracy	±2.5·10 ⁻⁶
Frequency resolution	20 Hz
Number of measurement points	2 to 100,001
Measurement bandwidths (with 1/3 steps)	10 Hz to 100 kHz
Cable loss measurement range	35 dB
Dynamic range ²	109 dB typ.

Measurement Accuracy³

Accuracy of reflection measurements ⁴	Magnitude / Phase
-15 dB to 0 dB	$\pm 0.4 dB / \pm 3^{\circ}$
-25 dB to -15 dB	±1.0 dB / ±6°
-35 dB to -25 dB	±3.0 dB / ±20°
Accuracy of transmission magnitude measurements ⁵	Magnitude
-50 dB to 0 dB	±1 dB
Trace noise magnitude ⁶	0.005 dB rms
Temperature dependence	0.015 dB/°C

Effective System Data

1 MHz to 6 GHz	
Directivity	46 dB
Source match	40 dB
Reflection tracking	±0.05 dB

Uncorrected System Performance

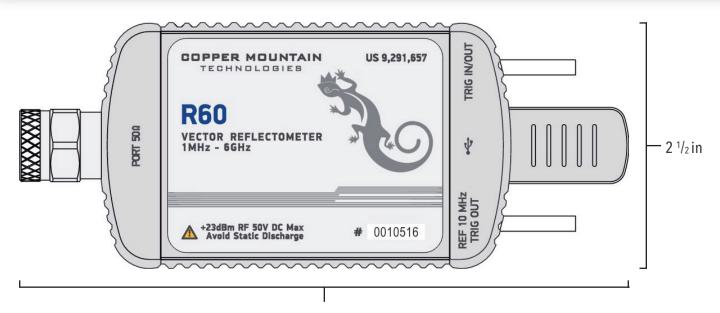
1 MHz to 6 GHz	
Directivity	15 dB (18 dB typ.)
Source match	15 dB (18 dB typ.)

Test Port

Power range	-35 dBm to -3 dBm (-40 dB to 0 dB, typ.)	
Power resolution	0.25 dB typ.	
Power accuracy	±1.5 dB typ.	
Interference immunity	+17 dBm	
Damage level	+23 dBm	
Damage DC voltage	50 V	

Measurement Speed

Time per point 100 µs typ.	
----------------------------	--


Frequency Reference Input

Port	Ref 10 MHz
External reference frequency	10 MHz
Input level	0 dBm to 4 dBm
Input impedance	50 Ohm
Connector type	SMA, female

[1] All specifications subject to change without notice. [3] Reflection and transmission measurement accuracy applies over the temperature range of $(73 \pm 9)^\circ$ F or $(23 \pm 5)^\circ$ C after 40 minutes of warming-up, with less than 1° C deviation from the full two-port calibration temperature, at output power of 0 dBm. Frequency points have to be identical for measurement and calibration (no interpolation allowed). [4] Transmission specifications are based on a matched DUT, and IF bandwidth of 1 Hz. [5] Reflection specifications are based on an isolating DUT. [6] Specification applies over frequency range from 1 MHz to 9 GHz, at output power of 0 dBm.

© Copper Mountain Technologies – www.coppermountaintech.com | Rev. 2022Q1

R60 Specifications¹

6 ¹/₂ in

Image shows actual size

Frequency Reference Output

Port	Ref 10 MHz
Internal reference frequency	10 MHz
Output reference signal level at 50 Ohm impedance	-1 dBm to 5 dBm
Connector type	SMA, female

Trigger Input

Port	TRIG IN / OUT
External trigger source	3.3 V CMOS, TTL compatible
Pulse width	≥1 µs
Polarity	positive or negative
Input impedance	≥10 kOhm
Connector type	SMA, female

Trigger Output

Port	TRIG IN / OUT
Max output current	20 mA
Trigger output	3.3 V CMOS, TTL compatible
Polarity	Positive or negative
Connector type	SMA, female

System & Power

Operating system	Windows 7 and above
CPU frequency	1.0 GHz
RAM	2 GB
Interface	USB 2.0
Connector type	Mini USB B
Power consumption	3.5 W

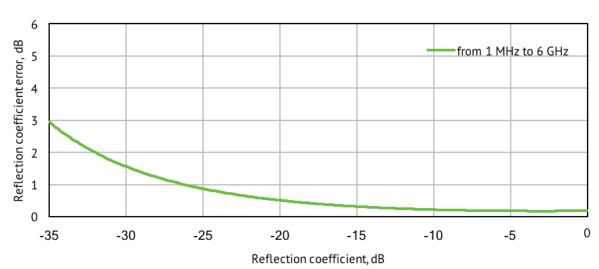
Factory Adjustment

Recommended factory adjustment interval	3 Years
---	---------

Dimensions

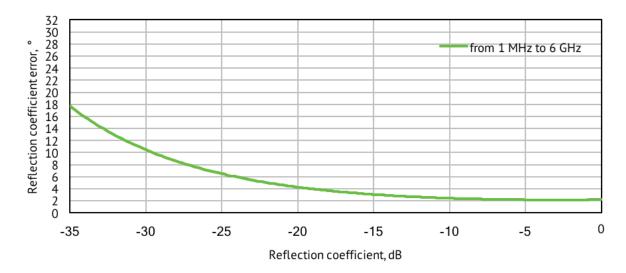
Operating temperature	+5 °C to +40 °C (41 °F to 104 °F)
Storage temperature	-50 °C to +70 °C (-58 °F to 158 °F)
Humidity	90 % at 25 °C (77 °F)
Atmospheric pressure	70.0 kPa to 106.7 kPa

Environmental Specifications


External reference frequency	10 MHz
Input level	0 dBm to 4 dBm
Input impedance	50 Ohm
Connector type	SMA, female
Output reference signal level at 50 Ohm impedance	-1 dBm to 5 dBm
Connector type	SMA, female
External trigger source	3.3 V CMOS, TTL compatible
Pulse width	≥1 µs
Input impedance	≥10 kOhm
Connector type	SMA, female

Reflection Accuracy Plots

Reflection Magnitude Errors


Specifications are based on isolating DUT ($S_{21} = S_{12} = 0$)

Specifications are based on isolating DUT ($S_{21} = S_{12} = 0$)

Reflection Accuracy Plots

Reflection Magnitude Errors

Technology is supposed to move. It's supposed to change and update and progress. It's not meant to sit stagnant year after year simply because that's how things have always been done.

The engineers at Copper Mountain Technologies are creative problem solvers. They know the people using VNAs don't just need one giant machine in a lab. They know that VNAs are needed in the field, requiring portability and flexibility. Data needs to be quickly transfered, and a test setup needs to be easily automated and recalled for various applications. The engineers at Copper Mountain Technologies are rethinking the way VNAs are developed and used.

Copper Mountain Technologies' VNAs are designed to work with the Windows or Linux PC you already use via USB interface. After installing the test software, you have a top-quality VNA at a fraction of the cost of a traditional analyzer. The result is a faster, more effective test process that fits into the modern workspace. This is the creativity that makes Copper Mountain Technologies stand out above the crowd.

We're creative. We're problem solvers.

1-Port VNA Series Overview

	R60	R140	R180
Frequency Range	1 MHz to 6 GHz	85 MHz to 14 GHz	1 MHz to 18 GHz
External Frequency Reference	10 MHz	32 MHz	10 MHz
External Trigger	Input/Output	Input	Input/Output
Power Connector	Reinforced (rugged) USB mini-B	USB mini-B	Reinforced (rugged) USB-C or +5V External
Adjustable Output Power	0.25 dB Steps	Hi/Low/Off	0.05 dB Steps

631 E. New York Street Indianapolis, IN 46202

United States: +1.317.222.5400 APAC: +65.63.23.6546 Latin America: +1.954.706.5920 EMEA: +44 75 03 69 21 13