Programmable Switch Mode Power Supplies PSA3200

User Manual

scientiFic

Copyright © Scientific All rights reserved.

Disclaimer

This instrument contains proprietary information, no part of this manual may be photocopied, reproduced or translated without any prior written consent.

Information in this manual supercede all corresponding previous released material.

Scientific continues to improve products and reserves rights to amend part or all of the specifications, procedures, equipment at any time without notice. Scientific shall not be liable errors contained in this document or if for incidental or consequential damages in connection with the furnishing, performance or use of this material.

Rev 1.00/ 0721

Scientific Mes-Technik Pvt. Ltd., B-14 Industrial Estate, Pologround, Indore- 452015,

Tel: 0731-2422330/31/32/33 Fax: 0731-2422334,561641 Email: info@scientificindia.com Website: www.scientificindia.com

India

Programmable Switch Mode Power Supplies PSA3200

Table of Contents

Introduction	on		5					
Safety inst	tructions		6					
Safety syn	nbols		7					
Chapter 1	Technica	Technical specifications 8						
	1.1	Specifications						
	1.2	Power supply outline drawings - dimension						
Chapter 2	Panel cor	ntrols	13					
	2.1	Front panel controls	13					
	2.2	Rear panel controls	14					
	2.3	Sockets, connector description used on rear panel	15					
Chapter 3	Installatio	on	17					
	3.1	AC Input mains connections	17					
	3.2	Cooling						
	3.3	Use of instrument on table top						
	3.4	Use of instrument in 19" Rack mounting cabinet						
	3.5	First time operation power ON						
	3.5.1	AC mains input						
	3.5.2	Connecting to AC mains	19					
	3.5.3	DC output check	20					
	3.5.4	DC constant current check	20					
Chapter 4	Descripti	ions	21					
	4.1	Safety first - grounding	21					
	4.2	Input Voltage	21					
	4.3	Operating conditions						
	4.3.1	Temperature & humidity	21					
	4.3.2	Storage	21					
	4.4	Thermal protection						
	4.5	Cooling	22					
	4.6	Output						
	4.7	Connecting the load	22					
	4.8	Local & remote Sensing						
	4.9	Constant voltage and constant current mode						
	4.10	Hold up time	24					
	4.11	Over voltage protection	24					

	4.12	AC fail	24
	4.13	Analog programming	24
	4.14	Description of analog connector pins and application	25
	4.15	Safe start - auto start mode	28
	4.16	Connecting load	28
	4.17	Connecting power supplies in series and parallel	29
	4.18	Power supply as battery charger	29
Chapter 5	Maintenan	ce	30
	5.1	Troubleshooting	30
		•	
Chapter 6	Dispatch p	procedure for service & Warranty	32
	6.1	Dispatch procedure for service	
	6.2	Warranty	32

scientiFic

Programmable Switch Mode Power Supplies PSA3200 Series

- Compact 2 U size
- Fast transient response
- High slew Rate
- Analog Programming
- Models with Output Voltage 16V to 1000 V, 3200 W Power

The PSA Series power supplies is designed for compact 2 U size with user friendly operation and higher efficiency.

Transient response better than 100 us, ensures that the output of the power supply recovers much faster and remains constant and oscillation free for dynamic loads. Power supplies can be remotely controlled programmed through analog programming.

With various protection features, over voltage protection, short circuit protection, protects expensive loads circuits in testing.

All the PSA series models can be operated from line voltage 207 to 270 V, 47 Hz \sim 63 Hz. Power factor correction also provides to ensure low harmonic content.

Safety instructions

The general safety instructions and symbols must be observed during all phases of operation of this instrument. Failure to comply with these precautions or with specific warnings or instructions givens in this manual violates safety standards of design, manufacture, and intended use of the instrument. Scientific assumes no liability for the customer's failure to comply with these requirements.

- Before applying power, verify all the safety precautions are taken, make all the connections firm.
- Make sure the protective ground of the unit is connected with system ground.
- Always operate the instrument only in prescribed operating conditions.
- Do not modify the instrument, This instrument is designed to meet all the safety and operating conditions. Any modification done may not be complying to the safety requirement and instrument may be damaged, causing hazardous conditions.

Environmental conditions

Please do not operate the instrument in the place that vibrates, dusty, under direct sunlight or where there is corrosive air. The Scientific Power supplies are designed for safety, applies to following conditions.

- Indoor use.
- -Ambient temperature 0 ~ 50°C non condensing 75% RH, 0~40°C non condensing 95% RH
- Altitude up to 3000 meters
- Pollution degree 2

Installation category

These instruments are designed for installation category II, Over voltage category II.

Grounding

The instrument ground must be well connected to instrument chassis of AC power mains input supply. The instrument must be connected through three conductor power cable, with the ground wire firmly connected to the electrical safety ground of power outlet. Any interruption in protective ground conductor, or disconnection will cause potential hazard that might cause personal injury.

Mains Input rating

This power supply unit is designed for specific mains input connections, as specified in the Technical specifications. Do not use AC supply exceeding the limits. For safety reasons the mains AC may should not fluctuate more than \pm 10 % of nominal voltage.

Fuse

Fuses must be changed by authorized Scientific service personal only for continued protection against risk and safety.

Live circuits

There are no serviceable part or alignment required by Operating personnel. Operating must not remove the instrument cover. No internal adjustment or component replacement is allowed by non-Scientific authorised qualified personnel. Never replace components with power cable connected. To avoid injuries, always disconnect power, discharge circuits and remove external voltage source before touching components.

Safety symbols

Caution!

Caution!: Denotes a hazard. Failure to follow instructions could result in minor personal injury and/or property damage. Follow the instructions for proper procedures.

Warning!

Warning!: Denotes a hazard. Failure to follow instructions could result in **SEVERE** personal injury and/or property damage. Follow the instructions for proper procedures.

Symbols marked on instruments

Attention refer to the manual.

Hazardous voltage exists, Caution! Electric shock.

Indicates Protective Ground Terminal

Indicates Ground Terminal

Off (Supply)

On (Supply)

Information on electrical and electronic equipment recycling

Our Equipment contain high quality components and material and are designated to facilitate recycling. After appropriate use of this equipment, when this is to be discarded, the equipment must not be treated as municipal waste. This must be disposed of separately via the appropriate return and collection system available. By following these instructions, you ensure that the product is treated correctly and help to reduce potential impacts on the environment and human health, which otherwise result from inappropriate handling. Recycling helps to conserve natural resources and protect environment.

For more information on collection and return, please contact dealer / from where you have purchased / to us giving full details.

Chapter 1 Technical specifications

1.1 Specifications (Unless otherwise stated these specifications are defined over the temperature range of

O to 40° C.)

A. DC Voltage, Current Specifications & Display: Models PSA16-200, PSA20-160, PSA32-100, PSA40-80, PSA60-52, PSA80-40, & PSA100-32

,		PSA16-200	PSA20- 160	PSA32-100	PSA40-80	PSA60-52	PSA80-40	PSA100-32
DC Outputs Voltage	V	16	20	32	40	60	80	100
DC Output Current	Α	200	160	100	80	52	40	32
Power				3	3200 Watts	3		
Efficiency at 230V full load		80%	80%	83%	83%	83%	85%	85%
Constant Voltage Mode								
Load regulation 0 ~ 100%	mV	3	3	5	5	5	5	5
Line Regulation	mV	2	2	2	2	2	2	2
Ripple BW=300 kHz	mVrms	8	8	8	8	8	10	12
Ripple 5Hz~1MHz	mVrms	12	12	12	12	12	15	18
Ripple 20 MHz	mVpp	40	40	40	50	50	55	60
Constant Current Mode							Į.	
Load regulation 0 ~ 100 %	mA	10	10	10	8	8	7	7
Line Regulation	mA	2	2	2	2	2	2	2
Ripple BW=300 kHz	mArms	25	25	20	20	20	20	18
Ripple BW=5 Hz ~1MHz	mArms	3	3	3	3	3	3	3
Ripple 20 MHz	mApp	200	150	150	120	110	100	90
Remote sense drop	1 V	1 V	2 V	2 V	2 V	2 V	2 V	
Programming Speed								
Rise time (10% to 90%) in	to resisti	ve load						
Time 100% load	ms	20	25	30	35	40	45	50
Time 10% load	ms	18	22	25	30	35	40	45
Fall time (90% to 10%) into	o resistiv	e load						
Time 100% load	ms	20	20	22	22	25	35	50
Time 10% load	ms	200	210	225	240	250	350	400
Time No load	s	1.2	1.2	1.5	2.0	2.5	3.0	3.5
Display								
Accuracy			Voltage	: ± (0.5% +	2D), Curr	ent : ± (0.5°	% + 2D)	
Scale Voltage (V)	0-16.0	0-20.0	0-32.0	0-40.0	0-60.0	0-80.0	0-100
Current (A)	0-200	0-160	0-100	0-40.0	0-53.3	0-40.0	0-32.0
Resolution Voltage		100 mV	100 mV	100 mV	100 mV	100 mV	100 mV	1 V
Current		1 A	1 A	1 A	0.1 A	0.1 A	0.1 A	0.1 A

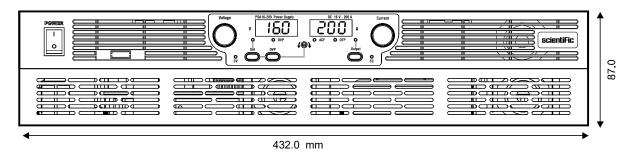
B. DC Voltage, Current Specifications & Display : Models PSA120-26, PSA160-20, PSA300-10, PSA600-5, PSA800-4 & PSA1000-3

		PSA120-26	PSA160-20	PSA300-10	PSA600-5	PSA800-4	PSA1000-3
DC Outputs Voltage	je V	120	160	300	600	800	1000
DC Output Curren	t A	26	20	10.6	5.3	4	3.2
Power				3200	Watts		
Efficiency at 230V	full load	85%	85%	85%	87%	87%	87%
Constant Voltage I	Mode						
Load regulation 0	~ 100% mV	5	8	8	15	15	15
Line Regulation	mV	3	3	3	5	5	5
Ripple BW=300 k	Hz mVrms	12	15	18	25	35	60
Ripple 5Hz~1MHz	z mVrms	18	20	25	30	45	70
Ripple 20 MHz	mVpp	60	70	80	100	120	150
Constant Current I	Mode						
Load regulation 0	~ 100 % mA	7	6	5	5	5	5
Line Regulation	mA	2	2	2	2	2	2
Ripple BW=300 kH	Hz mArms	18	15	15	15	15	15
Ripple BW=5 Hz	~1MHz mArms	3	3	3	3	3	3
Ripple 20 MHz	mApp	85	70	60	50	35	30
Remote sense dro	p	2 V	2 V	2 V	5 V	5 V	5 V
Programming Spe	ed						
Rise time (10% to	90%) into resisti	ve load					
Time 100% load	ms	70	100	150	175	200	275
Time 10% load	ms	63	95	140	165	240	260
Fall time (90% to	10%) into resistiv	e load					
Time 100% load	ms	80	100	180	200	220	250
Time 10% load	ms	600	800	850	1000	1200	1500
Time No load	s	4.5	6	8	10	12	15
Display							
Accuracy		Voltage : ±	(0.5% + 2D),	Current : ± (0.5% + 2D)		
Scale	Voltage (V)	0-120	0-160	0-300	0-600	0-800	0-1000
	Current (A)	0-26.7	0-20.0	0-10.7	0-5.33	0-4.00	0-3.20
Resolution Voltage		1 V	1 V	1 V	1 V	1 V	1 V
	Current	0.1 A	0.1 A	0.1 A	0.01 A	0.01 A	0.01 A

C. Analog Programming and other specifications

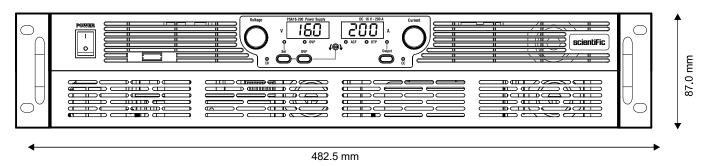
Temperature Coefficients	CV : 100 ppm/°C CC : 100 ppm after warm up of 30 min				
Output Stability	CV : 100 ppm/°C CC : 100 ppm after warm up of 30 min and during 8 hrs				
Analog Programing (Rear panel 25 pin D connector)					
Programing	$V:0\sim5$ V, Accuracy : \pm 0.5 % of Vout rated, Input impedance : 1MΩ I: 0 ~ 5 V, Accuracy : \pm 1 % of lout rated Input impedance : 1 MΩ				

Monitoring		V out : $0 \approx 5 V$ Accuracy: $\pm 1.0\%$ of Vout rated		
Monitoring		V out : 0 ~ 5 V, Accuracy : ± 1 % of Vout rated Output impedance : 150Ω / 4 mA max		
		I out : 0 ~ 5 V, Accuracy : ± 1 % of lout rated		
		Output impedance : 150 Ω / 4 mA max		
V reference		5.1 V <u>+</u> 15 mV		
		Power Supply OK Logic 1 (High); AC Fail – Logic 0 (Low) DC Fail – Logic 0 (Low), for DC fails by ± 5 % set value CV / CC Status: CV :Logic 0 / CC Logic 1 Interlock: Short = Power Supply enabled, Open = Power Supply disabled		
		DC ON status: ON = Logic 1, OFF = Logic 0 OVP status Fault: Logic 0, else OK =Logic 1 OTP status Fault: Logic 0, else OK =Logic 1		
Remote shutdow	n	+5 V		
Front Panel C	ontrols	Mains ON/ OFF, Voltage and Current setting with multi-turn potentiometer (Coarse and fine), OVP Setting		
In	dicators	LEDs for : Voltage, Current, CV, CC, Output ON, OVP, ACF, OTP		
Protections		Over voltage , Over current, Short Circuit, Fold back, Over temperature		
Output Terminals		Bus bar with M5 bolts		
Mains Input		AC input, Single phase, 207 to 270 V, 50 / 60 Hz (47 ~ 63Hz) Input connector : IEC320/C14 , EN 60320/14 Internal Fuse L : 20 A, 6.3 x 32 mm ceramic fuse.		
Power Factor		0.99 @ full load / 0.98 @ 50% load		
Turn On delay		600 ms after mains switched ON		
Inrush current		<50A		
Hold up Time		20 ms		
Environment Cor	nditions			
Operating Tempe	erature	0 ~ +50°C; with 100% load; derated 75% at 60°C		
Storage		-40 ~ + 85°C		
Humidity		max. 95% non condensing at 40°C, max. 75% non condensing at 50°C		
Safety		Insulation : Input to Output : 3750 V for 1 min Input to case : 2500 Vrms Output to case : 600 V Insulation resistance : 100 MΩ at 25°C, 70% RH, 500 Vdc		
Dimension		W x D x H : 443 x 557 x 87 mm (2U, 19" Rack size) excluding connectors, terminals, switches, front and back panel controls, handles etc.		
Weight		13.5 kg approx.		
Cooling		Forced variable fan speed		
Interfaces	Standard	Analog Programing		
Accessories Supplied		User Manual, Mains Connector		

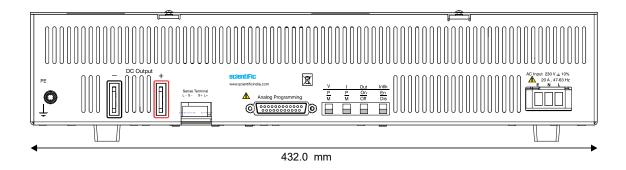

Notes:

- Subject to change without notice.
 Sensing at the rear panel of the power supply unit at sense terminals.
 Unit warm up time is 30 min.

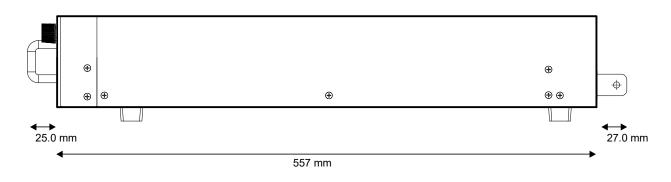
- Minimum output voltage guaranteed to maximum of 0.2% rated.
 Minimum output current guaranteed to maximum of 0.4% rated.


1.2 Power supply outline drawings - Dimension

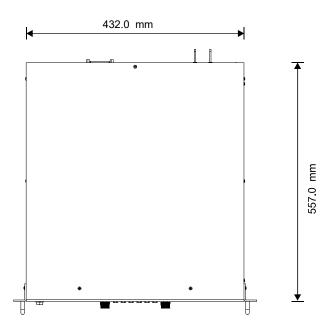
Front panel when unit is used on table top:

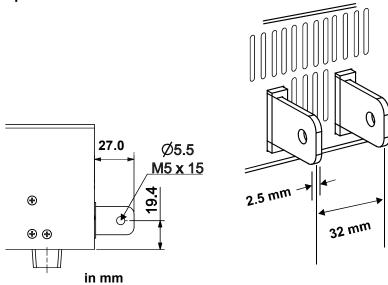

Note: Height excluding instrument feet

Front panel when unit is mounted in 19" rack cabinet:



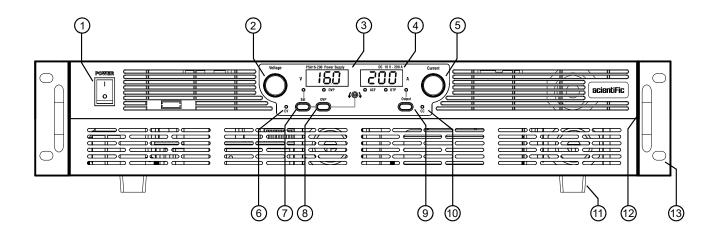
Note: When the power supply unit is mounted in 19" rack cabinet, instrument feet are removed and side rack mounting handle assemblies are fitted on both side.


Rear panel when unit is used on table top:


Side view when unit is used on table top:

Top view:

Output bus dimension :



Chapter 2 Panel controls

The logical arrangement of the controls allows anyone to familiar with the operation of the equipment after a short time, however, even experienced users are also advised to read through these instructions so that all functions and the safety are understood. If the equipment is not used as described in this manual, the protection provided by the equipment may be impaired.

2.1 Front panel controls

The front panel controls are arranged erogonimically to ease in operation with indicators. Before using the power supply unit, please read the following explanation to each control and connectors.

1) AC Power Switch : Mains AC power ON/Off control, when switched to ON, supplies main AC power

to unit.

(2) Voltage control : Voltage potentiometer control for setting the voltage. This is a 10 turn multi-turn

potentiometer, which gives fine adjustment control.

(3) Display Voltage : Display for setting and measured of output voltage.

(4) Display Current: Display for setting and measured of output current.

(5) Current control : Current potentiometer control for setting the current. This is a 10 turn multi-turn

potentiometer, which gives fine adjustment control.

(6) CV LED indicator : LED indicator for CV, lights when power supply is in constant voltage mode.

7) Set : Push button control for selecting setting for voltage and current. Keep Set pressed

and adjust the voltage potentiometer to set the output voltage. Similarly current can

be set. Set LED gets ON when Set push button is pressed.

(8) OVP : Push button control for selecting setting for over voltage protection. Keep pressed

and adjust the OV potentiometer with the help of screw driver to desired value of over

voltage protection. Set LED gets ON when Set push button is pressed.

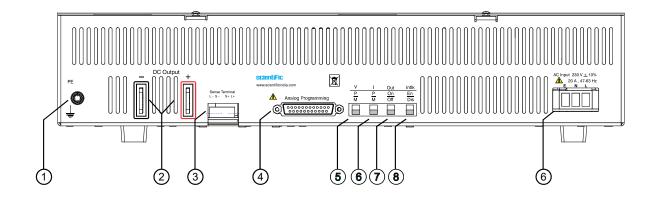
9 Out : Push button to control DC output ON / Off. Associated LED above lights when the

output is ON.

(10) CC LED indicator: LED indicator for CC, lights when power supply is in constant current mode.

(11) Instrument Feet : Instrument feet, to be fixed when power supply unit is to be used on table. Else not

needed when mounted in 19" rack cabinet.


(12) Instrument handel : Mounted on either side of the power supply unit for lifting the unit while mounting in

19" rack cabinet.

(13) Mounting holes : Mounting holes used in fixing the unit in 19" rack cabinet.

2.2 Rear panel controls

The rear panel is arranged with mains inlet connector, output terminals and analog programming ports etc. .

1 PE : Terminal provided to make connection to protective earth.

(2) – DC Output + : DC Output Bus bars, to connect the load.

(3) Sense Terminals : Remote sense terminals. Mating connector is provided with the instrument.

4 Analog Programming: 25 pin (F) D type connector for remote analog programming. Refer Analog programming description details.

(5) V/M-P : Switch selection for external voltage programming. To select external

programming slide the switch to P. M is for manual programming from front panel.

(6) I/M-P : Switch selection for external current programming. To select external

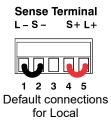
programming, slide the switch to P. M is for manual programming from front panel.

(7) Out / On-Off : Switch selection for auto output ON for when mains switch is powered ON. If

kept at Off, the output will be Off, when power switch is made On.

(8) INTLK/En-Dis : Switch selection for Interlock function enable / disable.

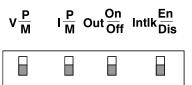
(9) AC Input : AC mains inlet socket to power the instrument.

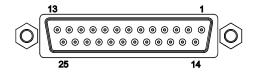

2.3 Sockets, connector description used on rear panel

The rear panel has different types off connections to other equipments for controlling, monitoring etc., followings are connections for quick understanding. Detailed description on each is in specific inside the manual.

Sense Terminal

Pin 1	L-	Local sense –
Pin 2	- S	Remote sense –
Pin 3	NC	Not connected
Pin 4	S +	Remote sense +
Pin 5	L +	Local sense +




Programming Switch settings:

There are four slide switch on rear panel, the settings are;

- $I\frac{P}{M} \qquad \begin{array}{c} \text{Current Programming: When the switch is on M the current is} \\ \text{set from the front panel,} \quad \text{when set to P} \;, \; \text{the current is set} \\ \text{from the analog connector.} \end{array}$

- Out On Output ON/OFF on mains switched ON: When the switch is at Off, the output of the power supply will be in OFF condition, when the mains switch is switched ON. If the switch is set to On, the output will be ON with mains switched ON.
- Intlk En Dis Interlock selection : When the switch is set to Dis (disable), the power supply operates in normal condition. When the switch is set to En (enable), the interlock function is enabled. See details further for operation.

Pin 1	Interlock +			
Pin 2	Ground Analog Programming			
Pin 3	Ground Analog Programming			
Pin 4	Reserved, Please do not connected any circuit to this pin!			
Pin 5	Over Voltage Status			
Pin 6	Over Temperature Status			
Pin 7	Reference Voltage output 5.1 V			
Pin 8	Not Connected			
Pin 9	Voltage Programming input			
Pin 10	Current Programming input			
Pin 11	Voltage Monitoring Output			
Pin 12	Ground Analog Programming			
Pin 13	CV / CC Status			
Pin 14	Interlock –			
Pin 15	Remote Shut Down input			
Pin 16	Power Supply status			
Pin 17	DC Output ON status			
Pin 18	Reserved, Please do not connected any circuit to this pin!			
Pin 19	AC Fail status output			
Pin 20	DC Fail status output			
Pin 21	Not connected			
Pin 22	Ground Analog Programming			
Pin 23	Ground Analog Programming			
Pin 24	Current Monitoring Output			
Pin 25	Not connected			

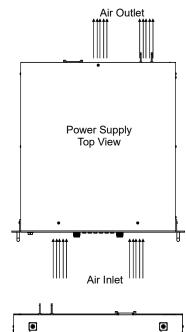
Chapter 3 Installation

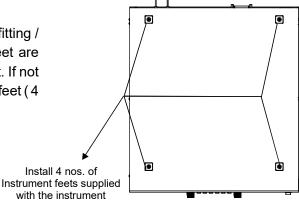
Your instrument is thoughtfully designed, manufactured, tested and inspected, found free of mechanical and electrical defects. When you receive the instrument, some inspections are necessary, and the condition must be understood and available before installing the instrument. Inspect the shipping container for damage if any after unpacking it. It is not recommended to use the instrument in the case of a damaged container. Keep all packing material until the inspection has been completed. If damage is detected, file a claim with carrier immediately and inform the Dealer, sales or authorized service facility nearest to you or Scientific.

If the contents in the container do not conform to the packing list, notify us or your dealer. Before putting this instrument in operation, make sure you go through the manual, safety and Cautions guidelines.

Ensure that the environmental conditions are fulfilled. Ensure that the instrument is not be used in place with vibrations, heating or exposed to sky, direct sunlight, for proper functioning and extensive life of service.

3.1 AC input mains connections

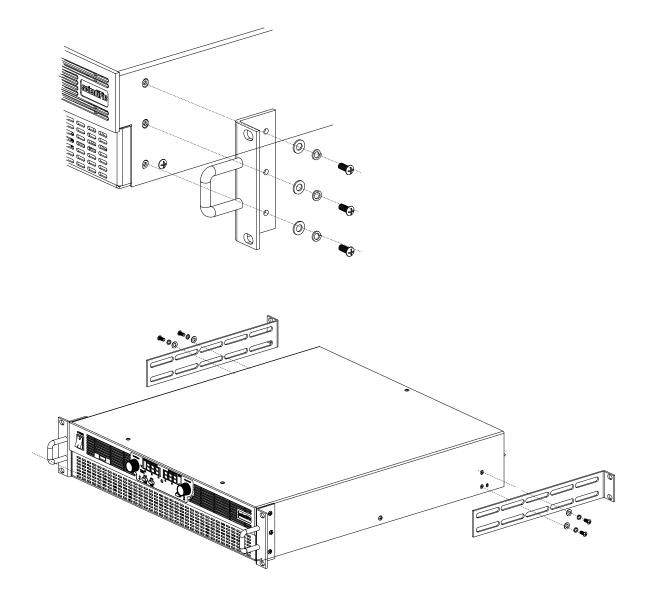

The mains AC socket (IEC compatible) is provided on the rear panel. Use the mains cord provided with the instrument, alternative ensure appropriate rating cable is used for connections as per the standard mains cord used in your country. This power supply unit is operated from 207 to 270 V, 47 Hz to 63 Hz.


3.2 Cooling

The power supply unit is forced air cooled, it has two internal fans, the speed of the fans depends on the temperature of internal heat sinks. The air movement is from front to rear. Allow approximately 10 cms of free space on front and rear of the instrument, for free air movement. This allows stacking power supplies one above other and in 19" rack cabinets. For prolonged life of the power supply, the inlet temperature of air should be below 35°C. The instrument control circuit senses heat sink temperature and adjust the fan speed accordingly. Thus the speed is controlled in pulsating mode, during this period , high pitch sound may produced, this is normal.

3.3 Use of instrument on table top

The power supply does not need any additional fitting / assembly of part. Ensure that the instrument feet are mounted on bottom side of the power supply unit. If not using appropriate screw driver, fix the instrument feet (4 nos.) provided with unit.


3.4 Use of instrument in 19" rack mounting cabinet

This power supply unit is designed to fit in standard 19" rack mount cabinet. it requires few parts to be installed before placing it in cabinet.

- 1. Use the front panel rack mount brackets and fix it on left and right side of the instrument as shown below. Figure below shows mounting of screws on right side, repeat the same for left side.
- 2. Use the rear panel support plate, if available, fix it on rear sides of the instrument, shown below. Else order the Rear Panel Support Plates optional available.

Caution!

Ensure that the supplied screws used for mounting only, else use appropriate screws of size M3x 6 mm. Ensure that they do not penetrate more than 6 mm inside.

3.5 First time operation power ON

Prior to power ON, ensure the followings,

- POWER On/Off switch on front panel is in Off position.
- There is no condensation on the unit, if any, allow some time to get it dry.
- Slide switches on the rear panel are set to default (front panel control) positions as shown below.

- Remote sense wires are connected as shown below, if not, make the connection as shown.

Pin 1	L-	Local sense –
Pin 2	S	Remote sense –
Pin 3	NC	Not connected
Pin 4	S +	Remote sense +
Pin 5	L+	Local sense +

The five pin sense plug can be pulled out from the socket, place the wires and re-insert the plug in sense terminal socket.

3.5.1 AC mains input

This power supply unit is designed for 207 to 270 V, 50 Hz / 60 Hz.

Caution!

- 1. The Power Supply Unit must be connected to mains inlet having earth connection.
- 2. For safety the chassis of this unit is connected to protective earth potential.
- 3. Do not interrupt earth connection, else chassis will be floated and unsafe. Personal touching in this case liable to get electric shock.
- 4. Do not touch lead-wire connected with output terminal when the output is ON. Do not touch such parts immediately after output is cutoff. Failure to do so could result in serious injuries or could be fatal.
- 5. When the mains cord is connected, even in power off conditions, few components in power supply unit is still connected to the AC mains. To avoid any electrical shock, first remove the mains cord, wait for two to three minutes, before opening the instrument cover.

3.5.2 Connecting to AC mains

- Connect the AC mains inlet cable, after ensuring correct AC mains availability. Use mains plug given in standard accessories. Connect appropriate cable rating, to connect ac mains.
- Switch the POWER switch to ON position.
- The display will lit, this means the power supply is connected to AC mains and power supply is ready to use.
- Switch the POWER switch to Off position.

AC Input 230V 47-63 Hz 1

3.5.3 DC output check

- Connect the DVM/DMM in appropriate voltage range depending on power supply output voltage.
- Press the push button "Output", the associated output LED will light, indicating the output is available on bus bar at the rear panel.
- Rotate the Voltage control potentiometer, the displayed voltage will vary with potentiometer variation.
- Observe the DMM reading and check with power supply display reading, the DMM reading should be within the stated accuracies of the output voltage.
- The minimum voltage reading is close to zero to maximum voltage as per specification of the model.
- Press the push button "Output", the DC output will be switched off and output LED will be off.
- Switch Off the AC power switch.

3.5.4 DC constant current check

- Connect the DC shunt across the power supply output terminals with appropriate cables of current capacity. Ensure that the shunt and wire capacities are more than the power supply power.
- Connect the DMM in mV range across the DC shunt.
- Switch the POWER to ON position.
- Press and hold the "Set" push button, the associated output LED will light, indicating that voltage and or current now can be set, before the output is switched ON.
- Rotate the Voltage control potentiometer, such that the voltage set is approx. 1.00 Volts
- Rotate the Current control potentiometer, such that the current set is approx. 1.00 A.
- Press the "Output" push button, the associated output LED will light, indicating the output is available on bus bar at the rear panel.
- Observe the DMM reading and compare it with the current displayed reading, it should be in specified accuracy.
- The minimum to maximum constant current can be checked with connecting the appropriate DC shunts.
- Press the push button "Output", the DC output will be switched off and output LED will be off.
- Switch off the AC power switch.

These two simple tests, ensure that the power supply is largely working and further can be checked and tested for the other modes and features after going through manual.

In Description chapter, all the features and modes are explained in details. Request to go through each for better understanding and use.

Chapter 4 Descriptions

4.1 Safety first - grounding

The power supply unit to be connected to the mains input as per the specification with firm protective earth grounding. The chassis of the unit is connected to ground potential. When the mains cord is connected, even in power off conditions, few components in power supply unit is still connected to the AC mains. To avoid any electrical shock, first remove the mains cord, wait for two to three minutes, before opening the instrument cover. Failure to do so will result in potential electric shock and serious injuries or could be fatal.

4.2 Input voltage

The power supply unit is designed 207 to 270 V, 50 Hz/60 Hz. The power supply cord must be used as per the country specific approved mains cord to avoid damage to unit and personal hazard.

There is no external fuse in the unit, a safety fuse is installed inside the unit. In event of fuse blown, the fuse must be replaced only by Scientific authorised service personal.

When power supply unit is switched ON, its inrush current is limited by internal circuitry. Switching ON and OFF at faster rate, may result in over heating of current limiter, resulting higher inrush current. The power supply is designed with active power factor correction, therefore the power factor is very close to unity, also the input mains current is almost sine wave. It's standby power is also very low, resulting in very high efficiency and low losses - lower heat generation.

4.3 Operating conditions

4.3.1 Temperature and humidity

The power supply can be used safely at fully from $0 \sim 50$ °C, with a condition that the surrounding free air movement is maintained for cooling. The normal humidity in ambient condition do not pose any problem, the heat produced in the instrument is sufficient to keep it dry.

In case of any condensation, allow the time to get it dry, before the instrument is switched ON and kept in use.

When power supply is mounted in 19" cabinet, ensure the free air movement. Industries and environment, with chemicals in air, e.g. chemical process industries, galvanizing industries, should take extra care to isolate the power supply unit by installing it in a clean room. This aggressive atmosphere, reacts with electronic component, damaging the parts and copper tracks etc. reducing the product life to standstill.

4.3.2 Storage

The power supply unit when not in used, or for transportation, should be kept in dry place. It can be stored or transported from $-20 \sim 70^{\circ}$ C without any problems.

4.4 Thermal protection

The power supply unit has thermal protection, against internal temperature when exceeds the safe limit. This only happens when adequate air circulation is not provided or very high environment temperature or in case of any fault in the unit. When this condition occurs, the power supply output gets switched OFF, the front panel "OTP" LED will light and the OT signal appear at analog connector on the rear panel.

Allow some time to cool down the power supply unit, you may observe the cooling fan speed is high. Once the temperature reaches below the set safe limit, the speed of fan reduces and in few minutes and it may stop.

To switch ON the output, press the Output switch, output LED will glow and output will be ON. If the problem reappears, check for space for air movement and clear the space. If it still persists, contact Scientific or dealer close to you.

4.5 Cooling

The power supply has two fans to cool down the internal temperature. The fresh air is taken from front side and exit on rear side. There is no ventilation holes on top and bottom side, this allows number of power supplies can be stack one over other.

The speed of the fan is governed by internal circuitry, it starts at predefined temperature and power when drawn.

4.6 Output

The DC output of power supply unit is switchable to ON or OFF.

The DC output is available on bus bar on the rear panel. The cable/ wire are connected with the help of M5 bolt and nut provided.

The output can be either CV (constant voltage) with current limiting or CC (constant current) with voltage limiting. The transition of mode from CV to CC, depending on the load current is very sharp and respective LED indicators CV or CC will light on the front panel.

The power supply is fully protected against all type of overload conditions including short circuit at output.

The power supply has very low ripple and noise. If needed, the ripple and noise has to be measured directly on the sense terminals. To measure the ripple and noise very sensitive measuring instruments and probes are required. To measure the correct ripple amount, there are a few standardized methods for ripple and noise measurements. One of which is the JEITA-RC9131A standard.

4.7 Connecting the load

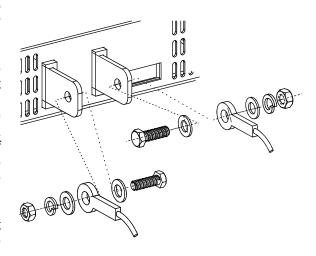
Caution!

Before connecting any output cables, turn OFF the output. While output is ON, there is potential electric shock hazard where the power supply models having output voltage greater than $40\,\mathrm{V}$.

While connecting the cable, observe the following steps for precaution.

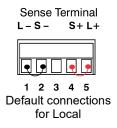
- Switch OFF the unit, disconnect the mains from the unit.
- Wait until the output capacitor gets discharge, for approximately 2 minutes.
- Connect the appropriate output cable on the output bus.
- If required connect the sense wires at load points, else local sense can be used.

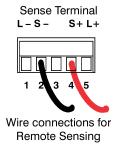
Select the output cable / wire with power rating higher than the power supply unit ratings. The size and length of the output cable is such that at maximum load the drop across each line conductor does not exceed the maximum permissible line drop of 1 V. If the drop is more, load regulation may not be maintained. In addition, there will be unnecessary power loss in cables.

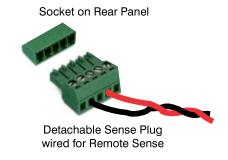

The recommended cables for connecting the output are as below.

Model	Cable Size	Fixing Bolt size	Torque
PS16-200, PS20-160	70 mm ²	M5	20 Nm
PS32-100, PS40-80	35 mm ²	M5	20 Nm
PS60-52, PS80-40, PS100-32,	10 mm ²	M5	20 Nm
PS160-20, PS120-26, PS160-20,	4 mm ²	M5	20 Nm
PS300-10, PS600-5,	2.5 mm ²	M5	20 Nm
PS800-4, PS1000-3	1.5 mm ²	M5	20 Nm

The output cable is terminated with appropriate size of Copper lug. While making connection, place the copper lug directly to the bus, followed by washers and bolt. If the sequence is not followed, contact resistance will be introduced between the output bus and the cable, will cause excessive heat at bus. To reduce the output line inductance, keep both positive and negative cable close to each other.


While connecting inductive loads, care must be taken to protect power supply unit from the spikes that may produced when output is switched ON and OFF. An appropriate rating of bypass diode should be connected at the output. The cathode of diode is connected to + ve output and anode to – ve output. The diode rating must be greater that the power supply voltage and current ratings. Similarly when the inductive motors are connected as load, that may give back emf. This back emf may cause a damage to the power supply , if protective measures are not taken. Connect a suitable surge suppressor of voltage of say 10 % to 15% of the maximum voltage of power supply unit.


Ensure that the output cable/ wire connected on output terminal are securely tightened before applying the power.



4.8 Local and remote sensing

In most cases, local sensing is used. Power supply units are delivered with local sensing. On the rear panel, sense terminal block is provided. It has detachable connector plug. The plug is wired for local sensing as shown below.

Sense Terminal connections

Pin 1	L –	Local sense –
Pin 2	- S	Remote sense –
Pin 3	NC	Not connected
Pin 4	S +	Remote sense +
Pin 5	L+	Local sense +

If the voltage regulation is to be maintained at load point, external wires are to be connected to sense points. Connect the wiring as shown above in the plug and insert the plug in remote sense socket. Before detaching or connecting the sense wires, switch off the power supply output, and ac mains to the unit. Wait for two minutes, until the output get discharged.

To keep the minimum external interference, the cables/ wires used to connect must be twisted pair. The wires should have good insulation to avoid any electrical contact with other equipments, ground or so. The power supply is floated and has no reference to other electrical circuit, unless physically connected. Such as grounded positive power supply where the negative output terminal is connected to protective earth potential, similarly negative power supply where the positive output terminal is connected to protective earth potential.

4.9 Constant voltage and constant current mode

Power supply can be used in either constant voltage mode - CV, or constant current mode - CC. The mode is indicated by front panel LEDs.

Care must be taken while measuring ripple current voltage, it must be measured on output directly, other wise few additional length of probe wire will add few mV of noise present in the field.

While using CC mode, do not use external Remote sense, otherwise it may add error in current set. While in CC mode DC fail signal will be generated usually.

4.10 Hold up time

Hold up time is the duration of time to which the output is available, when the mains ac input is switched OFF. This time depends on the load connected, lower the load current drawn higher will be the duration. If no load is connected, you will observe the display is still ON for some time, when AC power switched to OFF. This time helps the control system in power supply to communicate the failure of AC to other systems connected.

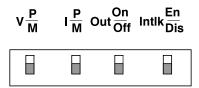
4.11 Over Voltage Protection

Over Voltage Protection (OVP) protects the load / circuits connected to the set over voltage value. When OVP occurs, the output gets switched OFF. To enable the output, press the Output switch again. Thus it protects the load circuit, in the event of excess of output voltage in local or in remote mode of operation.

The maximum over voltage can be set to approximately 105 % of the maximum settable voltage range.

When Over voltage protection is not required it should be set to the maximum value.

When over voltage occurs, the output gets switched OFF and output LED will be off, and OVP LED will light. To reset the power supply output, press the output ON/OFF switch. The power supply returns to previous state, if the voltage at output terminals diminishes, else again the over voltage protection comes into action.


4.12 AC fail

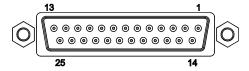
The power supply is in use and it's mains AC input fails or it is low or it was intermittent because of bad power conditions, the ACF LED will light and output will gets switched OFF. ACF LED lights until the power supply has energy, normally in seconds.

When power supply is in operation and you switch OFF the power supply switch, then also ACF LED will light, however it is not a fault, just indication of AC mains switched OFF. If there is a problem in power supply ACF LED may light, even with mains is connected, this show fault in power supply unit.

4.13 Analog programming

This programmable power supply can be controlled from remote analog inputs apart from the front panel controls. On rear panel slide switches enable power supply to be controlled through analog connector.

Either Voltage or Current or both can be programmed from analog connector.

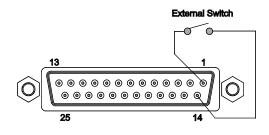

To maintain the power supply isolation and to prevent the ground loops, use an isolated programming source.

The power supply analog input and output signals are very sensitive and precise, any external disturbances may lead to errors in setting and measurements. Use a shielded cables for the analog control signals, if unshielded cable is use, provide EMI filters, suppressor to the cable. Keep the cable lengths as short as possible.

Apart from the setting the voltage and current, there are few status outputs are available which helps in remotely knowing the condition of power supply.

For measuring the voltage and current, monitor outputs are available in scale of 5. Note that, the Analog connector input signals for remote control, have reference to – ve output terminals and they are not floated. Wrong connection can cause earth loops, may cause faults. Care must be taken before connecting the analog connector after ensuring.

Analog Connector Pin layout


The Analog input output connector is D type 25 pin Female connector. Use appropriate mating connector always to give firm contacts and reliable connections.

4.14 Description of analog connector pins and their application

Pin 1: Interlock + & Pin 14 Interlock -

The interlock function is enabled by selecting from slide switch Intlk to "On" on rear panel. The power supply is kept in output ON. When the external switch is ON (shorted) the output will be available, if external switch is OFF (open) the output will be switched OFF.

It can be used in combination with door switch contacts, for safety in process room, cabinet, other application is as a Emergency Stop Switch.

Analog Programming Connector

Pin 2, Pin 3, Pin 12, Pin 22, Pin 23: Ground Analog Programming.

Pin 4: Reserved, do not connect any external circuitry!

Pin 5: Over Voltage status

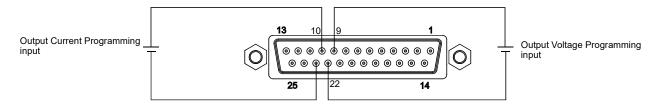
When the over voltage occurs the status at pin 5 is updated, it goes low.

Pin 6: Over Temperature status

When the inside temperature of the power supply unit increase beyond the set safe temperature, power supply output gets switched OFF and the status at pin 6 is updated. It goes low on over temperature, and remains until the normal conditions is attained.

Pin 7: Reference voltage output 5.1 V

When power supply is to be controlled through remotely using external potentiometers, this reference voltage can be used as reference supply to potentiometers. The potentiometer value must be 10 k Ohms or higher to avoid any


loading effect on reference voltage.

Pin 8: Not connected

This pin is not used in this model, reserve for future use if any.

Pin 9: Voltage programming input

In remote analog programming, to control the output voltage, V programming set value is fed to pin 9. Programming voltage in the scale of 5 V is applied.

The relation between the Vset and Vout is;

Vset = (5 x Vout) / Vrated

where Vset is voltage to be fed to pin 9

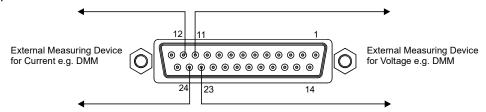
Vout is required output voltage

Vrated is the rated output voltage of power supply unit

Pin 10: Current programming input

In remote analog programming, to control the output current lprogramming set value is fed to pin 10. Programming voltage in the scale of 5 V is applied.

The relation between the Iset and lout is;


Iset = (5 x lout) / Irated

where Iset is voltage to be fed to pin 10 lout is required output current

Irated is the rated output current of power supply unit

Pin 11: Voltage monitoring output; Pin 24: Current monitoring output

In remote analog programming, you can monitor the output voltage and current on external measuring device e.g. on Digital Multimeter. The monitor output is in the scale of 5 V. These outputs are with reference Pin 12 and Pin 23 ground / return path.

The relation between the Vmonitor and Vout is;

Vmonitor with 5 V reference;

26

Vmonitor = (5 x Vout) / Vrated where Vmonitor is output voltage from pin 11

Vout is output voltage

Vrated is the rated output voltage of power supply unit

Imonitor with 5 V reference;

Imonitor = (5 x Vout) / Vrated

where Imonitor is output voltage from pin 24

lout is output current

Irated is the rated output voltage of power supply unit

Pin 13: CV / CC status

The status for CV and CC is

Power supply when in CV: Low Power supply when in CC: High

Pin 15: Remote shut down On/Off

In remote programming, the output of power supply can be remotely switched OFF by applying TTL (5V) at pin 15 of analog connector, with reference to ground at Pin 2. The power supply remain switched OFF, until the TTL voltage is goes 0V.

Pin 16: Power supply OK

When the power supply is working and there is no fault, the power supply status is updated on pin 16 as,

Power is OK: High

Power supply is not OK: Low

Pin 17: DC output ON

The status for DC output is updated at pin 17 as

Power supply Output ON : High Power supply Output OFF : Low

Pin 18: Not connected

This pin is not used. Please do not connected any circuit to this pin.

Pin 19: AC fail status output

While ac mains to the power supply is not available due mains failure or power supply mains switch is switched OFF the status is updated on pin 19.

AC mains available : High AC mains not available : Low

Pin 20: DC Fail status output

If the output voltage drops or increases 5 % above the set voltage, the status is updated at pin 20 as,

DC output within 5 % of set value : High DC output beyond 5 % of set value : Low

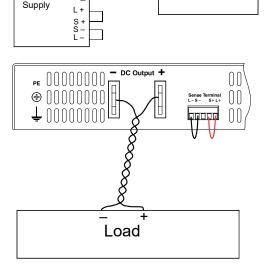
Pin 21: Not connected

Pin 25: Not connected

4.15 Safe start - auto start mode

When the power supply AC mains switch is pressed, ON, the DC output state can be controlled. The output can be made ON with mains AC ON, or OFF with mains AC ON. To select mode, use rear panel slide switch "Out - On/OFF" setting.

Out

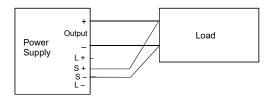

Off On

4.16 Connecting load

The load is connected on rear panel bus of power supply unit. The connecting wires/ cables should be of appropriate size, with good insulation. The power supply has floated output, this allows, if required the either of terminal can be connected to ground as per the load requirements. This means a positive or negative power supply can be configured.

While connecting load wire / cables, ensure that the power supply is switched OFF, wait for few minutes, until the output charge is discharged. Disconnect the mains, connecting the output wires and sense wires in local or remote sense as the case may be. Never change or remove the sense wire in power supply ON conditions, doing so it may cause a damage to the power supply unit as well as it's dangerous to do so for the person working on it.

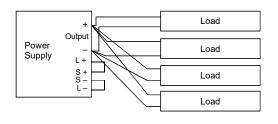
Load

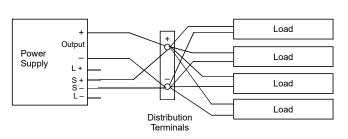

Output

Power

Connecting single loads

The load can be connected in either in local sense or in remote sense mode. In case of local sense mode the sense points are at output bus, where as when precise regulation is required at load points, the sense wires are connected across the load.


When the regulation is critical, remote sense to be used. Remove the local sense connections and move these sense wires to load end as shown in figure. While in remote sense, the sense wires should be twisted and or to be shielded to avoid any influence of surrounding noise. The sense wire length should be optimized to get the shortest length.



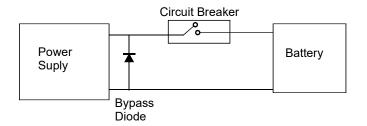
PE 0000000 De DC Output + ① 00000000 De DC Output + ② 00000000 De DC Output + ③ Sense Terminal L.S. St.L. 00

Connecting multiple load

When connecting multiple load, the loads can be connected directly on the output bus of power supply with local sensing or the power supply output can be connected to common bus, on which the multiple loads can be distributed. The regulation at common bus can be maintained by connecting the remote sense wires on common bus.

4.17 Connecting power supplies in series & parallel

To increase the current or voltage rating of power supply system, it is possible to connect the power supplies in series for increasing the voltage rating and connecting in parallel to increase the current rating. While connecting ensure that the models are same. Do not connect other models in series or in parallel, else there are possibilities of damaging the power supply units.


When the power supplies are connected in series the maximum output voltage will be the addition of all the units connected in series. Total maximum added output should be less than 600V.

In Remote control in analog programming care must be taken, the programming voltage fed has reference to output negative terminal and when the power supplies are in series the input programming voltage must be isolated else the power supplies connected will be short circuited through analog programming connectors return points / reference grounds.

When the power supplies are connected in parallel the current capacity gets multiplied by the number of units in parallel. There is no limit on number of power supplies connected in parallel.

4.18 Power supply as battery charger

The PSA series power supplies can be used as battery charger, CV/CC mode regulates the charging current. To protect the power supply, use a circuit breaker in series with charging cable, in event of excess current or reverse polarity the circuit breaker will disconnect in very short time. The circuit breaker should have double the battery voltage and fast acting (normally type Z). To protect the accidental polarity reversal current large amount will flow through the power supply, which will damage the power supply, to avoid, a bypass diode is connected in parallel to output terminal of power supply. The diode should be of higher rating and should have high heat dissipating capability.

Chapter 5 Maintenance

There are no user serviceable part inside the power supply unit. The instrument is carefully tested and calibrated using standards traceable to National Laboratories. To prevent electrical shock, do not remove cover. If you have any questions concerning the maintenance or operation, contact Scientific Customer Support or nearest dealer to you.

No User internal calibration is required during the operational life time of power supply unit. Do not open the power supply unit cover, there exists high voltage points on the PCB circuitry. Only qualified and trained technical person understanding the potential hazards is expected to handle the inside faults if any. In such case we recommend to send the power supply unit to Scientific for service and repairs.

In case of power supply failure, when it needs service / repairs , there is no User repairs or replaceable parts inside the power supply unit. No User replaceable parts are listed in this manual. Repairs are only made by manufacturer or by authorized service facilities.

No periodic maintenance is required except to take care of your instrument by cleaning the exterior of the instrument regularly with a dusting brush. Dirt which is difficult to remove on the casing & plastic parts, can be removed with a moist cloth (99% water, 1% mild detergent) spirit or washing benzene(petroleum ether) can be used to remove greasy dirt. Under no circumstances the cleaning fluid should get into the instrument. The use of cleaning agents can attack the plastic & paint surfaces.

5.1 Troubleshooting

These power supply units are designed for continuous use, as such there are very less probabilities of failures. However, in the event of failure following first hand troubleshooting will help to diagnosis the problem. If the problem is still not solved, please contact nearest dealer to you or Scientific Customer Support giving full details.

	Problem Symtoms		Checks and solutions
1	1 No Output		When power switch is ON no display , no output. Check the mains cord continuity. if faulty replace.
		1.2	Display is ON, but no output even pressing output button to ON. Check if the output cable is shorted. if faulty replace.
		1.3	Check if sense block wires are open or wrongly wired. if yes place it correctly S+ to positive and S– to negative bus outputs.
		1.4	Check if voltage and current both potentiometers are set to zeroes, if yes move potentiometers to desired values.
		1.5	Check the OVP LED lights, if yes over voltage has occurred, remove the conditions and reset the over voltage protection by pressing Output push button.
		1.6	Check for the Over temperature conditions, if yes remove the conditions and reset the output by pressing output push button.

	Problem Symtoms		Checks and solutions
2	Voltage and or Current potentiometers do not work	2.1	Check if the power supply is in Remote analog programming mode. If yes bring the switches to manual mode.
3	Remote Programming does not work	3.1	Check if the power supply unit remote programming is not selected from the rear panel slide switch settings.
		3.2	Check if , analog programming voltages has higher DC offset. if yes , reduce it or use floated / isolated programming input signals.
4	Output voltage is higher than set value	4.1	Check if the sense wires are open at sense block or at load end if used remote sensing. If yes re-wire the same.
		4.2	Check if the output cable is too long and of lower rating. Reduce the output cable to the possible length and increase the cable capacity using higher cross section cable.
5	High Ripple voltage present of output	5.1	Check if the sense wires are open and output cable is too long. if sense wires open, re-connect the sense wire.
		5.2	Check if Remote sense is used and sense wires are too long and hanging. if yes, optimize the wire lengths and use twisted pair for sense wires.
6	There is no Fuse visible	6.1	There is no user replaceable fuse in the power supply. Only inside power supply unit there are fuses to protect the fault conditions. In case of these gets open, only Scientific qualified or authorized trained personal should replace the fuse.
8	Others	8.1	If fault still persist, the power supply unit should be sent to Scientific for necessary repairs. Please follow the instructions given in Dispatch procedure for servicing the power supply units on next page, before sending the unit.

Chapter 6 Dispatch procedure for service & warrantee

6.1 Dispatch procedure for service

No user serviceable parts are inside the instrument, should it become necessary to send back the instrument to factory for service, please observe the following procedure:

Before dispatching the instrument please write to us giving full details of the fault noticed.

- 1. After receipt of your communication, our service department will advise you whether it is necessary to send the instrument back to us for repairs or the adjustment is possible in your premises.
- Dispatch the instrument (only on the receipt of our advise) securely packed in original packing duly insured and freight paid along with accessories and a copy of the faults details noticed at our Service Center or factory.

6.2 Warranty conditions

Scientific warrants all its Instruments to be free from defects in material and workmanship when used under normal operating conditions in accordance with the instructions given in the manual for a period of 12 (Twelve) months from date of purchase from Scientific or its authorized dealers. The service during the warranty period will be rendered on return to factory/service center basis.

- 1. Its obligation under this warranty is limited to repairing or replacing at its own discretion. This warranty shall not apply to any defect, failure or damage caused by accident, negligence, misapplication, alteration or attempt to repair, service or modify in any way.
- 2. This warranty does not include display, fuses, batteries or accessories. This warranty is only valid with the original purchaser who must have properly registered the product within 15 days from date of purchase. No other warranty is expressed or implied.
- 3. When it becomes necessary to return the instrument to our Factory facility, kindly pack it carefully in the original carton or equivalent and ship it duly insured, transportation charges prepaid.
- 4. Your Scientific instrument is a complex electronic device and deserves the best service available by technicians thoroughly familiar with its service and calibration procedures.